
DirectNET PLC Access
Local application

Thu, Feb 1, 1996

The vacuum controls interface for the PET project uses a Programmable Logic
Controller to do the interlocks handling and vacuum-specific logic that is required.
The IRM interfaces to the PLC via an RS-232 serial port. The basic approach is to
routinely collect analog and digital data from the PLC, then map it into the IRM's
analog and digital channels. Control actions are also output as necessary. All of this
logic is handled by a local application.

The serial I/O input supported by the system system software passes through
the Serial Input Queue (SERIQ) table. By monitoring the contents of the SERIQ, all
received characters of serial input, except the linefeed (0A) and null (00) characters
can be seen. This is enough to catch the data coming from the PLC.

The DirectNET protocol can transmit data in hex (binary) or in Ascii.
Although using Ascii requires twice the time for the data transfers, it helps to
unambiguously detect control characters that are part of the protocol. This
implementation of DirectNET support will use Ascii for that reason. The following
control codes are used by the DirectNET protocol:

ENQ 05 ETB 17
ACK 06 STX 02
NAK 15 ETX 03
SOH 01 EOT 04

DirectNET Overview

One data transaction requires a series of I/O communications between the
host computer and the slave PLC. To begin any transaction, the master sends an
inquiry 3-byte sequence of "N", "address", ENQ, where address = $20 + the PLC slave
address. The slave responds with the same sequence, with the ENQ byte replaced by
an ACK.

The master then sends a header that defines the operation. Its format is SOH,
header, ETB, LRC. The LRC stands for a one byte Longitudinal Redundancy Check
that is the exclusive OR of all the Ascii bytes within the header. The header itself
consists of the one-byte (two Ascii characters) slave address, read (30) or write (38)
character, data type character, two-byte starting address, one-byte #complete (256-
character) blocks, one-byte number of bytes in last block, and one master ID byte (0
or 1). The slave responds with an ACK character.

For a read request, the slave continues by sending the data message in the
format STX, data block, ETX, LRC. If the #characters in the data block is larger than
256, so that the #complete data blocks is nonzero, then more than one data block is
sent, with each complete data block using a ETB character in place of the ETX. Each

DirectNET PLC Access p 2

data word within a data block is in byte order, least byte first. After each complete
data block, or the last incomplete data block (of length 0–255 characters) is received
by the master, the master returns an ACK. The slave then returns an EOT. The
master finally sends an EOT. This final EOT clears the slave for future detection of
an inquiry sequence.

For a write request, the transaction sequence is the same, but the data is
transferred from the master and ACK'd by the slave. After the last data block is
ACK'd by the slave, then the master sends an EOT to end the entire transaction.

Timeouts are imposed on the successive communications of a transaction. If a
slave times out awaiting a response from a master, it will be necessary for the
master to send an EOT to clear the slave to accept a new inquiry.

The details of this communication protocol are found in the manual.

IRM serial support

The usual serial port support in an IRM is organized around lines of input
separated by a CR character. Nulls (00) and LF characters (0A) are removed from
the input stream. If more than 128 characters are received without a CR, then one is
inserted into the serial stream. By operating the DirectNET communications in
Ascii mode, this should not cause a problem, as LF and nulls and CR aren't used.
The slave sends a CR in Ascii mode. But a data block could be longer than 128
characters, so waiting for one would not be advisable. Therefore, as a first step, we
will simply monitor (at 10Hz) what is found inside the SERIQ and in this way be able
to see all characters in the stream as soon as they come in and are deposited into
the SERIQ by the serial receive interrupt code.

Serial output support is usually organized as lines, with trailing blanks
removed and CR and LF inserted. This is the usual way, but there is a separate
listype that permits serial output without such editing. We shall use the latter
listype for DirectNET output, in case the CR, LF would cause a problem for the slave
PLC. The serial baud rate for use with the DirectNET interface is 19200 baud.

Data acquisition approach

The DNET local application program is used to collect the data routinely by
sending a read transaction. The response data consists of two parts, the first for
analog and the second for digital data. The response data is then mapped into the
IRM's local analog channels and digital bytes. Between data acquisition
transactions, DNET also monitors a message queue for setting commends, either to
an analog word or a digital word. When a message is detected, a write transaction is
made in place of the next data acquisition transaction. This approach means that all
the support afforded analog channels and binary bits in the IRM system can be
preserved. The acquisition may be slow, but this is not thought to be a problem for a

DirectNET PLC Access p 3

vacuum system controls interface. With this approach, an update rate of 1Hz or
better, and a control action delay of less than one second, should be achievable.

In order to prevent other uses of the serial port for output, we may place a
flag bit in the PRNTQ header that prevents such output. A simple way to do this may
be to allow only the raw listype to work for serial output. Usual serial port output
uses the normal output logic that edits out terminal blanks and adds CR,LF.

Message queue support

A change in the system code supports use of a PLCQ message queue. When a
setting is made to a PLC-type device, a message about the setting is placed into the
message queue. (If it has not been created, it will first be created.) In this way,
there is a place for the settings that result for the Restore action following a system
reset to reside, until the time that the DNET local application is initialized and the
first data acquisition transaction completed. As DNET is initialized, it attaches to
the PLCQ message queue so it can check for any waiting messages.

Parameters

Local application DNET parameters, using example test values, are as follows:
ENABLE B 00D4 Bit# enables local application
SLAVE0001 Slave address of PLC interface
DATATYPE 0001 Data type# used for data pool acquisition
REFADDR 1001 Base reference addr for analog, digital data pool
NACHANS 0010 #chans of analog data
NDWORDS 0008 #words of digital data following analog data
MAPCHAN C 0180 Base analog Chan# for mapping to local IRM space
MAPBIT B 0180 Base binary Bit# for mapping to local IRM space

0000 (spare)
0000 (spare)

The above set of parameter values supports 16 analog channels and 8 words
(128 bits) of digital data.

Digital control scheme

Each BADDR entry is normally a memory address that should be written for
the associated status byte. But 1553 and SRM communications required specially-
coded 4-byte BADDR entries that are signaled by the use of hi byte values 80 and 81,
respectively. For the PLC support, we use a hi byte value of 82. When the usual

DirectNET PLC Access p 4

binary data scan occurs, via the "0405" entry in the data access table, such entries
are skipped. When a digital control setting is made, the data type and reference
address are found in the lower three bytes of the BADDR entry. To perform the
setting, the information must be passed to the DNET local application via the
message queue scheme described above.

DNET collects the data pool from the PLC every 4 cycles. For support by a local
application that is invoked at 10 Hz, this is the easiest approach. During the first
cycle, the enquiry message is sent. On the second cycle, the 3-byte response to the
enquiry is received, and the request header is sent. On the third cycle, the
acknowledgment to the request header is received, followed by the data that was
requested, and the ACK is sent. (If there is too much data, given the bandwidth
available, then an additional cycle or more would be required.) On the fourth cycle,
the EOT is received, and the EOT is sent to the PLC to clear it for receipt of the next
enquiry. The message queue is checked for any settings to be performed. If one is
found, then another four cycles is spent doing that write transaction. The required
data type byte, reference address word, and data word are taken from the message
queue entry, which was filled by the setting support in the system code using the
contents of the BADDR entry. Upon completion of the write transaction, a new read
transaction is performed that updates the data pool. As a result, the data pool is
updated every 0.4 seconds, but when a setting must be performed, 0.4 seconds is
taken to perform it. The maximum time between updates of the data pool is
therefore 0.8 seconds. The maximum time to perform a setting, assuming none is
already queued, is also 0.8 seconds. If a faster update rate is needed, a means of
invoking the local application in response to serial activity will be required. At first,
omitting such support is easier.

Bit-based, byte-based, and word-based digital control are supported. In any
case, however, a word-wide setting is actually performed. Bit-based toggle, set hi,
and set lo digital control types are supported. Bit-based pulse types are not
supported for this hardware; the PLC's cpu logic can be used to do it.

Analog control

Analog control is specified by a new analog control type# $19. The second
byte gives the data type, and the last two bytes give the reference addresss to be
used to effect the setting. It may be in the memory region that is part of the data
pool, in which case the PLC's cpu will have to perform the setting to the real I/O
module; or it may be in the I/O module itself. Upon successfully queuing the setting
message, the setting word of the ADATA entry for that channel is updated, even
though completely successful completion of the setting is not assured. Because knob
control could queue settings faster than they can be delivered at 0.8 sec, the local

DirectNET PLC Access p 5

application checks for successive entries in the queue referencing the same target
address (data type and reference address), and coalesces them as much as possible,
delivering only the final setting it finds waiting in the queue.

